Sunday 5 November 2017

Moving Media Processo Matlab


Media mobile - MA Abbattere Media mobile - MA Come esempio SMA, prendere in considerazione un titolo con i seguenti prezzi di chiusura oltre 15 giorni: Settimana 1 (5 giorni) 20, 22, 24, 25, 23 Settimana 2 (5 giorni) 26, 28, 26, 29, 27 settimana 3 (5 giorni) 28, 30, 27, 29, 28 a MA di 10 giorni sarebbe in media i prezzi di chiusura per i primi 10 giorni come il primo punto di dati. Il punto di dati successivo sarebbe cadere il primo prezzo, aggiungere il prezzo del giorno 11 e prendere la media, e così via, come illustrato di seguito. Come osservato in precedenza, il Mas lag attuale azione di prezzo perché si basano sui prezzi passati il ​​più a lungo il periodo di tempo per il MA, maggiore è il ritardo. Così un 200 giorni MA avrà un grado molto maggiore di ritardo di 20 giorni MA perché contiene prezzi degli ultimi 200 giorni. La lunghezza del MA da utilizzare dipende dagli obiettivi di trading, con AIC più brevi utilizzati per il trading a breve termine ea lungo termine AIC più adatto per investitori a lungo termine. Il MA 200 giorni è ampiamente seguita dagli investitori e commercianti, con interruzioni sopra e sotto questa media mobile considerati importanti segnali di trading. AdG anche impartire importanti segnali di trading per conto proprio, o quando due medie cross over. Un MA crescente indica che la sicurezza è in una tendenza rialzista. mentre un MA declino indica che è in una tendenza al ribasso. Allo stesso modo, slancio verso l'alto è confermata con un crossover rialzista. che si verifica quando un MA breve termine attraversa sopra un MA-lungo termine. spinta al ribasso è confermata con un crossover ribassista, che si verifica quando un MA breve termine attraversa sotto di un più lungo termine MA. Cross-correlazione dei due Moving Average Processi Questo esempio mostra come trovare e tracciare la sequenza di correlazione incrociata tra due media mobile processi. L'esempio confronta la cross-correlazione campione con il teorico cross-correlazione. Filtro un ingresso rumore bianco con due diversi filtri in movimento media. Tracciare il campione e teorici sequenze cross-correlazione. Ottenere il campione sequenza di cross-correlazione fino ad essere in ritardo 20. Plot campione cross-correlazione con il teorico correlazione incrociata. MATLAB e Simulink sono marchi registrati di The MathWorks, Inc. Si prega di consultare mathworkstrademarks per un elenco di altri marchi registrati di proprietà di The MathWorks, Inc. Altri nomi di prodotti o marchi sono marchi o marchi registrati dei rispettivi proprietari. Seleziona il tuo CountryDownload movAv. m (vedi anche movAv2 - una versione aggiornata che consente ponderazione) Descrizione Matlab include funzioni chiamate movavg e tsmovavg (serie temporale media mobile) nella casella degli strumenti finanziari, movAv è stato progettato per replicare la funzionalità di base di questi. Il codice qui fornisce un bell'esempio di gestione di indici all'interno di cicli, che possono essere fonte di confusione per cominciare. Ive ha deliberatamente mantenuto il codice breve e semplice per mantenere questo processo chiaro. movAv esegue una media mobile semplice che può essere utilizzato per recuperare i dati rumorosi in alcune situazioni. Esso funziona prendendo una media dell'ingresso (y) su una finestra temporale scorrevole, la cui dimensione è specificato da n. La grande n è, maggiore è la quantità di arrotondamento l'effetto di n è relativo alla lunghezza del vettore d'ingresso y. ed efficace (beh, quasi) crea un filtro passa-basso frequenza - vedere la sezione esempi e considerazioni. Poiché la quantità di smoothing fornite da ciascun valore di n è relativo alla lunghezza del vettore di ingresso, le sue sempre valore collaudo valori diversi per vedere cosa appropriata. Ricordate, inoltre, che n punti si perdono su ogni media se n è 100, i primi 99 punti del vettore di input dont contenere dati sufficienti per una media 100 pt. Ciò può essere evitato un po 'per medie impilamento, per esempio, il codice e grafico seguente confronta diverse medie finestra lunghezza. Si noti come liscia 1010pt viene confrontato con un singolo media 20pt. In entrambi i casi 20 punti di dati vengono persi in totale. Creare Xaxis x1: 0,01: 5 Generare noiseReps rumore 4 repmat rumore (randn (1, ceil (Numel (x) noiseReps)), noiseReps, 1) rimodellare rumore (rumore, 1, la lunghezza (rumore) noiseReps) Genera YData yexp rumore ( x) 10noise (1: lunghezza (x)) perfrom medie: y2 movAv (y, 10) 10 pt Y3 movAv (Y2, 10) 1010 pt Y4 movAv (y, 20) 20 pt Y5 movAv (y, 40) 40 pt y6 movAv (y, 100) 100 pt figura trama trama (x, y, y2, y3, Y4, Y5, a6) leggenda (dati grezzi, 10pt media mobile, 1010pt, 20pt, 40pt, 100 pt) xlabel (x) ylabel ( y) titolo (Confronto di medie mobili) codice movAv. m funzione di uscita run-through movAv (y, n) La prima riga definisce le funzioni di nome, ingressi e uscite. L'ingresso x deve essere un vettore di dati per eseguire la media on, n dovrebbe essere il numero di punti per eseguire la media su uscita conterrà i dati medi restituiti dalla funzione. Uscita Preallocare outputNaN (1, Numel (y)) Trovare il punto medio di n punto medio rotondo (n2) Il principale lavoro della funzione avviene nel ciclo for, ma prima di iniziare due cose sono preparati. In primo luogo l'uscita viene pre-ripartito come NaNs, questo è servito due scopi. Innanzitutto preallocazione è generalmente buona pratica in quanto riduce il giocoleria memoria Matlab ha a che fare, in secondo luogo, lo rende molto facile disporre i dati medi in un output della stessa dimensione del vettore di ingresso. Questo significa che le stesse xaxis possono essere usati successivamente per entrambi, che è conveniente per la stampa, in alternativa i NaNs possono essere rimossi successivamente in una linea di codice (Uscita (La variabile punto medio viene utilizzato per allineare i dati del vettore di uscita. Se n 10, 10 punti saranno persi perché, per i primi 9 punti del vettore di input, c'è neanche dati sufficienti per prendere una media di 10 punti. Come l'uscita sarà più breve l'ingresso, ha bisogno di essere allineato correttamente. punto medio sarà essere usato così una pari quantità di dati viene perso all'inizio e alla fine, e l'ingresso è mantenuto allineato con l'uscita dai buffer NaN create quando preallocare uscita di 1:. lunghezza (y) - n Trova intervallo di indice di prendere media sopra (a: b) vietare Calcolare significa uscita (amidPoint) media (y (a: b)) fine nel ciclo for in sé, è preso un medio su ogni segmento consecutivo dell'ingresso il ciclo verrà eseguito per una che è.. definita come 1 fino alla lunghezza dell'ingresso (y), meno i dati che verranno persi (n). Se l'ingresso è lungo 100 punti ed n è 10, il ciclo viene eseguito da (a) da 1 a 90. Questa intende un fornisce il primo indice del segmento da mediare. Il secondo indice (b) è semplicemente un-1. Così alla prima iterazione, a1. n10. così b Ottobre 11-01. La prima media viene determinata per y (a: b). o x (1,10). La media di questo segmento, che è un singolo valore, viene memorizzato in uscita all'indice amidPoint. o 156. Nella seconda iterazione, a2. b 210-1 11. quindi la media è ripreso x (2,11) e conservato in uscita (7). L'ultima iterazione del ciclo per un ingresso di lunghezza 100, A91. b 9010-1 100 quindi la media è ripreso x (91: 100) e memorizzato in uscita (95). Questo lascia uscita con un totale di n (10) i valori NaN all'indice (1: 5) e (96: 100). Esempi e considerazioni medie mobili sono utili in alcune situazioni, ma theyre non sempre la scelta migliore. Ecco due esempi in cui non stanno necessariamente ottimali. calibrazione microfono Questo insieme di dati rappresenta i livelli di ogni frequenza prodotta da un altoparlante e registrato da un microfono con una risposta lineare noto. L'uscita del diffusore varia con la frequenza, ma può correggere questa variazione con i dati di calibrazione - l'uscita può essere regolata in livello per tener conto delle fluttuazioni calibrazione. Si noti che i dati grezzi è rumoroso - questo significa che una piccola variazione di frequenza sembra richiedere una grande, irregolare, cambiamento nel livello di spiegare. E 'realistico O è un prodotto dell'ambiente di registrazione sua ragionevole in questo caso ad applicare una media mobile che leviga la curva levelfrequency di fornire una curva di calibrazione che è leggermente meno irregolare. Ma perché isnt questo ottimale in questo esempio più dati sarebbero meglio - più calibrazioni piste media insieme avrebbe distrutto il rumore del sistema (fino a quando il suo caso) e di fornire una curva con meno sottile dettagli persi. La media mobile può approssimare solo questo, e potrà cancellare alcuni avvallamenti più alta frequenza e picchi dalla curva che realmente esistono. onde sinusoidali Uso di una media mobile su onde sinusoidali evidenzia due punti: la questione generale della scelta di un numero ragionevole di punti per eseguire la media. La sua semplice, ma ci sono metodi più efficaci di analisi dei segnali di media dei segnali oscillanti nel dominio del tempo. In questo grafico, l'onda sinusoidale originale è tracciata in blu. Il rumore è aggiunto e tracciata come la curva arancione. Una media mobile viene eseguita a diversi numeri di punti per vedere se l'onda originale può essere recuperato. 5 e 10 punti di risultati ragionevoli, ma non lo togliere il disturbo del tutto, dove, come un maggior numero di punti cominciano a perdere i dettagli di ampiezza come media si estende su diverse fasi (ricordate le oscilates onda intorno allo zero, e dire (-1 1) 0).Un approccio alternativo sarebbe quello di realizzare un filtro passa-basso che può essere applicato al segnale nel dominio della frequenza. Im non andando a entrare nei dettagli in quanto va oltre la portata di questo articolo, ma come il rumore è di frequenza notevolmente superiore alla onde frequenza fondamentale, sarebbe abbastanza facile, in questo caso per la costruzione di un filtro passa-basso che rimuoverà l'alta frequenza rumore.

No comments:

Post a Comment